The ABCs of TBI

Rachel Garvin, MD
Assistant Professor, Emergency Medicine
Fellow, Neurocritical Care
University of Cincinnati

Outline
- Statistics
- Anatomy
- Classification of TBI
- Pathophysiology behind increased ICP
- PBtO2
- Management Strategies
- Mild TBI

TBI stats
- 2 million TBI’s treated each year in US, one every 15 seconds
- Leading cause of M&M in young adults
- Single severe TBI victim can generate 4 million dollars in lifetime costs
- Falls are leading cause of TBI in adults >65
- Adults ages >75 have highest rates of TBI related hospitalization and death
- 70-90% of TBI worldwide are considered “mild,” 1% of those require a surgical intervention

Classification of TBI
- Pathoanatomic
- Physical Mechanism
- Pathophysiologic
- Injury Severity

Pathophysiologic
- Primary Injury
 - Immediate damage done
- Secondary Injury
 - Potentially avoidable factors
 - Hypoxia, hypotension, hypercarbia, hyponatremia, seizures
Injury Severity

- **GCS**
 - 13-15 → Mild TBI
 - 9-12 → Moderate TBI
 - <8 → Severe TBI

Predicting Outcomes

- Study using data from CRASH trial looked at predicting outcomes (death at 14 days and death/disability at 6 months)
- Best predictors: age (>40), low GCS, obliteration of basal cisterns/third ventricle, pupillary response, other extracranial injuries

Rotterdam CT scoring

- Basal Cisterns: open, compressed, absent
- Midline Shift: < or > 5mm
- Epidural Mass Lesion
- IVH or Traumatic SAH

Imaging

- **Noncon Head CT**
- MRI
- CTA
- Other trauma imaging

ICP

- Monroe-Kellie Hypothesis: Blood, brain, CSF
- Normal ICP → 5-15mmHg (3-7mmHg young children)
- In TBI, the balance gets disrupted

Cerebral Perfusion Pressure (CPP)

- CPP = MAP-ICP
- Normal CPP >50mmHg
- CBF:
 - Directly proportional to CPP and vessel radius
 - Inversely proportional to blood viscosity and vessel length
Causes of Increased ICP

- Intracranial
 - Hematomas/Contusions
 - Ischemia
 - Hydrocephalus
 - Increased CBF
- Extracranial
 - Hypoxia
 - Hypercarbia
 - Hyper/Hypotension
 - Head rotation
 - Fever
 - Seizure
 - Increased intraabdominal pressure

Monitoring in TBI

- ICP
- Brain tissue oxygen
- Microdialysis
- Jugular venous saturation
- Cerebral blood flow

What about brain tissue oxygen?

- Secondary brain injury not always associated with increased ICP
- Study by Spiotta et al looked at conventional ICP/CPP management vs PbtO₂-based therapy
- 70 pts with severe TBI managed with Licox to keep PbtO₂ > 20mmHg as well as ICP/CPP
- Compared with 53 historical controls with goal of ICP <20 and CPP >60
- Lower mortality and more favorable short term outcomes

How do we treat low PbtO₂?

- Increase oxygenation
- Increase MAP
- Change PCO₂

Early Management of TBI

- ABC’s
- Imaging
- Emergent treatment

ABC’s

- Airway
 - Avoiding hypoxia
 - RSI
 - Post-intubation sedation
- Breathing
 - Normocarbia
- Circulation
 - Avoiding hypotension
Treating ICP

- Keeping things “normal”
- Sedation
- Positioning
- Mannitol/Hypertonic saline

Mannitol vs Hypertonic Saline

- Mannitol
 - Rheologic effects
 - Osmotic effects
 - Crosses BBB
 - Contraindicated in hypovolemic pts

- HTS
 - Osmotic effect
 - Can be used in hypovolemic pts
 - Can cause hyperchloremic acidosis, decreased platelet aggregation

Emergent Treatment

- Hyperventilation
- Decompressive Hemicraniectomy

Hyperventilation

- Decreased PaCO2 \(\rightarrow \) alkalinizing CSF \(\rightarrow \) cerebral vasoconstriction
- Decreased CBV \(\rightarrow \) decreased ICP, BUT........
- Effects last around 6 hours until CSF pH equilibrates
- Then there is re-dilation of cerebral arteries \(\rightarrow \) rebound ICP

Decompressive Hemicraniectomy

- Most often a rescue procedure
- Data equivocal on whether outcomes improved

Outcomes

- Difficult to make early predictions on outcome
 - Initial GCS
 - Pupils/Motor Score
 - Other injuries
 - MR spectroscopy
 - Specialty care in neuro-ICU's improve outcomes
Mild TBI

Study by Bazarian et al looked at mild TBI in the ED

- Used the NHAMCS for isolated mild TBI
- Less than ½ of patients were asked about pain
- Only half of those were treated
- Only 34% of those discharged from level I trauma centers were referred for further follow-up

Help for Mild TBI

- Educate patients on the possible symptoms from mild TBI
- Ensure follow-up

Summary

- TBI is a serious healthcare issue, especially in the elderly
- There are many different ways to classify TBI
- Prevention of secondary injury is key
- Educate patients with mild TBI

References